LIQUID SCINTILLATION COUNTING OF RADIOAUTOGRAMS

John W. Geiger and Lemuel D. Wright

Graduate School of Nutrition Cornell University Ithaca. New York

Received March 31, 1960

A recent communication to this journal (Wang and Jones, 1959) described a technique for the liquid scintillation counting of paper sections from radioautograms involving the use of custom-made vials that hold paper sections in rigid vertical position. No consideration was given to any necessity for uniformity with respect to the angle of rotation of the paper sections as seen by the photo tubes of the scintillation spectrometer. It would appear, therefore, that if valid radioautographic data could be obtained by a procedure where the rotation of paper sections was uncontrolled, equally good results could be obtained without rigid suspension of the paper sections. Accordingly, sections of paper containing applied radioactive material were merely inserted into scintillation vials, scintillation solution added, and counts obtained at various angles of rotation as seen by the photo tubes. Although slightly lower counts were obtained when the paper sections were at 900 to the light path as opposed to parallel to it, such differences were quite small. Thus for most radioautographic work the more elaborate procedure of Wang and Jones is superfluous and areas of radioactivity may be located on paper sections with precision adequate for the purposes intended without the use of special vials. Similarly, the angle of rotation need not necessarily be controlled, thus permitting the use of a scintillation spectrometer equipped with an automatic sample changer where the vials are subjected to a certain amount of spin as the sample is placed in counting position. Data supporting the conclusions made are summarized in the table.

Liquid Scintillation Counting of Labelled Compounds Applied to Paper as Influenced by Several Variables

Sample	CPM at Indicated Degree of Turn ^a					
	00	45°	90 °	135°	1800	Without Paper b
	40 Lambda Na Acetate-Cl4 Solution ^C					
1 2 3 4 5	18,070 16,568 17,746 17,723 17,206	18,187 16,204 17,756 17,349 16,871	16,733 15,163 17,055 16,653 15,723	16,764 16,048 16,941 16,931 15,650	17,277 15,933 16,480 16,997 15,921	12,639 12,589 13,872 13,499 13,419
	20 Lambda Na Acetate-Cll4 Solution ^C					
1 2 3 4 5	10,243 9,837 9,650 10,190 10,087	10,116 9,744 9,573 10,181 10,031	9,890 9,157 9,059 9,736 9,446	10,088 9,120 9,991 10,062 9,096	10,077 9,602 9,309 10,045 9,536	8,149 7,848 8,111 8,426 7,711
	20 Lambda Glucose-1-Cl ¹ Solution ^d					
1 2 3 4 5	68,630 63,549 65,731 68,802 67,951	61,109 65,255 62,196 63,171 60,452	63,733 58,366 59,899 57,829 59,873	69,373 62,862 60,115 62,978 66,079	67,253 65,751 65,514 68,937 66,032	29 61 41 33 48

a 0° signifies paper parallel to light path, 90° signifies paper perpendicular to light path. Paper sections were 3.5 cm.x 1.5 cm. 5 dram counting vials with plastic screw tops were employed. Counts obtained with a Packard TRI-CARB model 314 "manual" liquid scintillation spectrometer where the rotation of the vial could be controlled.

Reference

Wang, C.H., and Jones, D.E., Biochem. and Biophys. Res. Comm., 1, 203 (1959).

b Count obtained following removal of paper from vial.

c Counted with a scintillation mixture containing 20% ethanol. This is an example of a compound eluted by the scintillation mixture. Samples counted for 10 mins.

d Counted with a scintillation mixture using toluene as the only solvent. This is an example of a compound that is not eluted by the scintillation mixture. Samples counted for 1 min.